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Abstract Neural oscillatory activity in the beta band (13–30 Hz) is prominent in the brain and it is
transmitted partly linearly to the spinal cord andmuscles.Multiple views on the functional relevance
of beta activity in the motor system have been proposed. Previous simulation work suggested that
pools of spinal motoneurons (MNs) receiving a common beta input could demodulate this activity,
transforming it into low-frequency neural drive that could alter force production in muscles. This
may suggest that common beta inputs to muscles have a direct role in force modulation. Here we
report the experimental average levels and ranges of common beta activity in spinal MNs projecting
to single muscles and use a computational model of aMN pool to test if the experimentally observed
beta levels in MNs can influence force. When beta was modelled as a continuous activity, the
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amplitude needed to produce non-negligible changes in force corresponded to beta representation
in the MN pool that was far above the experimental observations. On the other hand, when beta
activity was modelled as short-lived events (i.e. bursts of beta activity separated by intervals without
beta oscillations), this activity approximated levels that could cause small changes in force with
estimated average common beta inputs to the MNs compatible with the experimental observations.
Nonetheless, bursting beta is unlikely to be used for force control due to the temporal sparsity of this
activity. It is therefore concluded that beta oscillations are unlikely to contribute to the voluntary
modulation of force.

(Received 31 May 2022; accepted after revision 30 September 2022; first published online 12 October 2022)
Corresponding authors Jaime Ibáñez: BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza 50009,
Spain. Email: jibanez@unizar.es; Dario Farina: Department of Bioengineering, Imperial College, Royal School of
Mines, London SW7 2AZ, UK. Email: d.farina@imperial.ac.uk

Abstract figure legend This work studied a potential role of beta oscillatory activity (13–30 Hz) on force production.
Through simulation of different patterns of beta inputs to a spinal motoneuron pool, we looked at how force production
can be affected by this oscillatory activity. The levels of beta, quantified with intramuscular coherence measures, were
compared to experimental values. The results suggest that beta oscillatory activity is unlikely to contribute to voluntary
force modulation.

Key points
� It has been previously proposed that beta (13–30 Hz) common inputs to a motor neuron pool
may have a non-linear effect in voluntary force control.

� The needed strength of beta oscillations to modulate forces has not been analysed yet.
� Based on computer simulations, we show that sustained beta inputs to a spinal motoneuron pool
at physiologically reported levels have minimal effect on force.

� Levels of sustained beta rhythmic activity that can cause a significant change in force are
not compatible with experimental observations of intramuscular coherence in human skeletal
muscles.

Introduction

Oscillatory activity in the beta band (13–30 Hz) is
prominent in the motor nervous system of primates
(Baker, 2007; Baker et al., 1997, 1999; Engel & Fries,
2010; Gilbertson et al. 2005; Kilner et al. 2000; Schoffelen
et al. 2005) and, in humans, numerous neurological
diseases affectingmotor control have been associated with
abnormal cortical beta activity (Bichsel et al. 2021; Brown
et al. 2001; Hammond et al. 2007; Proudfoot et al. 2018).
Beta rhythms have been shown to be transmitted from
the brain to the muscles, which makes the study of these
signals a particularly relevant tool for assessing cortico-
spinal transmission in humans (Baker, 2007; Conway et al.
1995; Baker et al. 1997; Salenius et al. 1997; Zokaei et al.
2021; Engel & Fries, 2010).
Despite its salience, the functional role of beta

oscillatory activity is yet unclear. Due to the
biomechanical properties of muscles, the inputs that
muscle fibres receive at high frequencies (i.e. >10 Hz)
have a negligible effect on force production (Farina
& Negro, 2015; Farina et al. 2014; Negro & Farina,

2011; Negro et al. 2016). This implies that the linear
contributions of beta projections to muscles are irrelevant
for motor control. However, previous simulation studies
have suggested that MNs may determine non-linear
transformations of the high-frequency inputs they
receive, converting them into low-frequency activity
that could drive muscle contractions (Watanabe & Kohn,
2015). This would be in agreement with recent findings
indicating that beta activity can be transmitted with the
physiologically shortest delay to muscles, which suggests
that using beta to transmit motor commands could
provide a way for low latency motor control compared
to using non-modulated low frequency signals (Ibáñez
et al. 2021). However, critically, the theoretical levels
of beta that would be needed to non-linearly affect the
neural drive to muscles and therefore force generation are
unknown. An alternative view of beta rhythms suggests
that this activity may be generated in short-lived bursts at
relatively low rates (Zokaei et al. 2021). This would imply
that the role of beta in force modulation would not be
suitable for continuous control, but it would rather act as
an event signal.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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The current work studied the association between levels
of common beta inputs to MNs and their capacity to
modulate forces produced by the innervated muscles.
For this purpose, we considered different scenarios of
beta activity, ranging from sustained beta oscillations
to short-lived bursting beta. Closed-loop simulations
by computational models of a MN pool were used to
determine the input to the MNs such that a target force
was achieved. The effect of adding various levels and
dynamics of beta activity to this input was assessed in
terms of force change. In addition, the possibility of
sustained beta activity being used to directly modulate
force was considered. The results from the simulations
were compared to experimental data.

Methods

In this study, we aimed to understand how force
production can be affected with different dynamics of
beta (continuous to short periods of high amplitude). To
address this, we ran a series of simulations of a MN pool
to test how various scenarios of common beta inputs to
MNs could change force. Reference levels of beta in MN
pools were also determined from experimental data. The
data, models used, and scenarios considered are described
in the next sections.

Ethical approval

Experimental data were recorded from a total of 28
participants (ages 22−40, 3 females). All subjects gave
written informed consent. The study was approved by
the University College London Ethics Committee and was
conducted in accordance with the Declaration of Helsinki
(Ethics Application 10037/001), except for registration in
a database.

Muscle recordings. High-density surface electro-
myography (HD-sEMG) signals were recorded from
the right tibialis anterior (TA), abductor digiti minimi
(ADM) and first dorsal interosseous (FDI) muscles at
a sampling frequency of 2048 Hz. The electrode grids
consisted of 64 electrodes in a 13 × 5 arrangement with
an interelectrode distance of 8 mm for the TA and 4 mm
for ADM and FDI (OT Bioelettronica, Torino, Italy).
Ankle dorsiflexion force was recorded from the TA with
the right foot placed under a custom-made lever, knees
bent at 900. To measure force from FDI and ADM, sub-
jects had to place their right hand on a flat surface with
the palm facing down. All fingers, except index (for FDI
recordings) or little (for ADM recordings) were restrained
from moving using a strap. Subjects were instructed to
push against a force transducer with their finger (BTP
200; Biometrics Ltd, Newport, UK).

Task. At the beginning of the recording sessions,
participants were asked to perform maximum voluntary
contractions (MVCs) with the studied muscle. To assess
beta levels during isometric contractions, subjects were
asked to follow a target force consisting of ramp and
steady phases. First, force trajectories increased linearly
until a target of 5% MVCs (ADM) or 10% MVCs (FDI
and TA) was achieved, after which participants were
instructed to hold the contraction for 60 s. We selected
isometric tasks as beta activity in the brain and muscles is
expected to be largest during steady contractions (Engel
& Fries, 2010).

Simulations

Motoneuron pool. TheMNpool used for the simulations
consisted of 25 slow-type MNs, that represented the type
of units active during a low-level force output (Henneman
1957; Henneman et al, 1974; Binder et al. 1996). Slow-type
MNs were chosen to simulate beta activity during mild
contractions (Schoffelen et al. 2005; 2008). Increasing the
number of simulated MNs did not substantially influence
the results, as assessed in pilot analyses (results not
shown).
For all simulations, the MNs received both common

inputs (same for all MNs) and independent inputs. The
common input always contained a form of beta oscillatory
activity. As a simplification, beta rhythms for most
simulations were represented as a 20 Hz sinusoidal signal
(Watanabe &Kohn, 2015; 2017). Independent inputs were
in the form of white Gaussian noise.
Each MN in the simulated pool was represented as

a conductance-based two-compartmental model, based
on previously published work (Cisi & Kohn, 2008). The
structure of each MN consisted of a dendritic and a
somatic compartment. The soma contained the leak, Na+,
fast K+ and slow K+ currents, while the dendrite had leak
currents besides the synaptic input currents. In thismodel,
all excitatory inputs were combined into one. The resting
membrane potential was set to 0 mV and the Nernst
equilibrium potentials were adjusted accordingly. For
the somatic and dendritic compartments, the membrane
potential change over time was described by eqns (1) and
(2) (Cisi & Kohn, 2008), respectively:

dVs (t )
dt

= − 1
Cs

{
gc [Vs (t ) −Vd (t )] + gLs [Vs (t ) − EL]

+ gNam3h [Vs (t ) − ENa] + gKfn4 [Vs (t ) − EK]

+gKsq2 [Vs (t ) − EK]
}
, (1)

dVd (t )
dt

= − 1
Cd

{
gc [Vd (t ) −Vs (t )]

+ gLd [Vd (t ) − EL] + ge [Vd (t ) − Ee]
}
. (2)

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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4 B. Zicher and others J Physiol 0.0

In the above equations, Vs and Vd represent the
somatic and dendritic membrane potentials; Cs and
Cd the somatic and dendritic membrane capacitances;
ENa and EK the sodium and potassium equilibrium
potentials; gNa, gKf, gKs the sodium, fast potassium and
slow potassium conductances; EL the leak equilibrium
potential; gLs and gLd the leak conductances for soma
and dendrite, gc the coupling conductance; ge and Ee
the conductance and reversal potential for excitatory
synapses. The rate constants m, h, n, q are for sodium
activation, inactivation, fast potassiumactivation and slow
potassium activation. A pulse-based model was used for
these rate constants (Destexhe, 1997; Cisi & Kohn, 2008).
The coupling conductance, membrane capacitances and
leak conductances were calculated using eqns (3), (4) and
(5) (Cisi & Kohn, 2008):

gc = 2
Rild
πr2d

+ Rils
πr2s

, (3)

Cx = 2πrxlxCm, (4)

glx = 2πrxlx
Rmx

, (5)

where Ri is cytoplasm resistivity (set to 70 Ω cm); rs,
rd, ls, ld are somatic and dendritic radius and length;
x denotes the compartment; Cm is membrane specific

capacitance (set to 1 μF/cm2); Rms and Rmd (Rmx) are
somatic and dendritic membrane specific resistances The
differential eqns (1) and (2) were solved with the fourth
order Runge-Kutta method.
The twitch response of eachmotor unit wasmodelled as

a second-order critically damped system with MN spikes
represented as Dirac impulses (Cisi & Kohn, 2008). The
total force produced was calculated by summing all motor
unit responses.
All parameter values used in the S-type MN models

were taken from Cisi & Kohn (2008). The models were
custom implemented using Julia programming language
(https://julialang.org/).

Simulation runs. To test a potential role of beta
oscillatory activity in force modulation, both
closed-loop and open-loop simulations were
run (Fig. 1). In the closed-loop simulations, a
proportional-integral-derivative (PID) control algorithm
controlled the common input to the pool in such a
way that a target force was tracked (Fig. 1A). In this
case, the PID directly modulated the excitatory synaptic
conductance (see eqn (2)). In the open-loop simulations,
sustained or bursting common beta inputs of various
levels were added to a low-frequency common drive to
measure how force changed (Fig. 1B).

Figure 1. Schematics of the simulations
A, in the closed-loop simulations, a PID controller set the common input to the pool such that a target force was
achieved. Only three MNs are shown. On each iteration, MN responses to the given inputs were calculated from
the two-compartmental models. Total force was then computed as the sum of twitch responses from all motor
units. Finally, the error between the target and force produced was fed back to the controller which updates the
input. B, in open-loop simulations, the pool received three inputs: independent, low-frequency common drive and
a common beta. The low frequency common inputs were previously generated using a closed-loop simulation
with an unrestricted controller that had to track a constant force target. Beta inputs were represented as either
sustained or concentrated in short-lived bursts.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 0.0 Beta does not drive muscle force 5

In the first set of simulations, we tested whether any
non-negligible changes in force could be produced when
a sustained, constant amplitude beta input was added to
a low frequency common drive created by the PID. This
common input was set by an unrestricted controller such
that a constant force was achieved. The level of beta was
determined in such a way that intramuscular coherence
values (see details in the Data analysis section) were below
0.6, to reproduce results reported in the experimental
part of this study. We report the levels of beta inputs
as the percentage that beta amplitude represented out of
the total common input: (amplitude of sinusoid/total low
frequency common input) × 100. Three different noise
levels were tested to make sure the ratio of independent
to common inputs did not affect the reached conclusions.
The independent inputs were represented as Gaussian
noise with a standard deviations of 0.015 nS, 0.03 nS and
0.045 nS, which is equal to 7%, 15% and 23% of common
input.

As in the first simulations beta was a pure 20 Hz
sinusoid, we testedwhether having beta representedwith a
larger bandwidth (15–25 Hz) would affect the results. We
therefore ran a simulation with the same low-frequency
common and independent input parameters as in the case
in which independent inputs were 15% of the common
inputs (outlined above) but with beta input generated as
bandpass filtering (using bandpass function in Matlab)
Gaussian noise. The variance of the filtered noise was set
so that the resulting IMC peak in beta was 0.6. The effect
on force was then compared to the control.

To test whether beta inputs could track different
force traces, the frequency content of the common
input controlled by the PID was restricted in the next
simulation. In this case, the PID controller was setting the
amplitude of a predefined 20 Hz sinusoidal input to the
MNs, with a step size of 1 ms. The mean level of input
(DC component summed to the beta inputs) was chosen
in a such a way that a certain force level was reached
when the power in beta was 0. The independent inputs
were Gaussian noise with standard deviation of 0.015 nS
(equal to 7% common input), as in the last simulations.
This setup allowed us to test whether force changes can
be controlled by modulating the amplitude of beta. We
tested two different target force traces. First, a force target
with step changes from 5 to 10 N had to be followed by
the PID. The mean input was set such that, with no beta,
the force produced would be 5 N. Therefore, in order to
increase force (reach 10 N), the power of the beta input
to MNs had to be modulated as soon as the step change
took place. In the next case, smaller, 1 Hz sinusoidal force
changes in the target had to be tracked by the controller.
Again, the mean input was set such that in all conditions
an ∼8 N force was produced in the absence of beta
inputs. The amplitudes of the 1 Hz targets were chosen
so that the forces produced had coefficients of variation

(COV) of 9%, 6% and 3%. The lowest COV tested
here matches experimental observations for a condition
in which a muscle produces ∼10% of the maximum
voluntary contraction (MVC) (see Experimental results).
Next, the case of beta transmitted as short-lived events

(or bursts) was studied. Again, each MN received a
low-frequency common input and independent input in
form a Gaussian noise with a standard deviation equal
to 23% common input. The amplitude and rate of bursts
was varied, while the length of the bursts was fixed
to 150 ms (equal to 3 cycles of the 20 Hz sinusoid)
(Echeverria-Altuna et al. 2022). The simulations were run
30 times for each of the 10 conditions tested in total: a
control with no beta input to the pool, three different
levels (amplitudes) of beta, each with three different
rates of bursts. For each run, a new beta input was
created according to the parameters (rate and amplitude
of bursts), to vary the exact time when bursts happened.
As the location of the bursts could affect the intramuscular
(IMC) values (see Coherence measures in Data analysis),
the simulations were run multiple times to get an estimate
of the variation between runs. A rate of 0.5 Hz means
that the bursts were happening on average every 2 s.
Equivalently, at 0.67 Hz and 1 Hz, the average time
between bursts was 1.5 s and 1 s, respectively. A 20%
variation in when the bursts happened was added to all
three cases. The amplitudes were chosen empirically, such
that the largest level of beta had a small effect on force.
The previous open-loop simulations mostly assessed

extreme cases of beta, with either a continuous, constant
amplitude or rectangular bursts of fixed durations.
To quantify how force changes were affected by the
dynamics of beta inputs, we generated a spectrum of
beta oscillatory activity by modulating a 20 Hz sinusoid
with a low frequency noise of increasing variances.
The modulatory signals were generated by first low-pass
filtering (2nd order Butterworth) Gaussian noise with
a cut-off frequency of 3 Hz. This value was chosen to
simulate the low rate of bursts reported in previous work
(Bräcklein et al. 2022; Echeverria-Altuna et al. 2022).
To create 15 different cases with increasing variance of
the signal, the standardized low-frequency noise was
multiplied by a range of values from 0.01 to 1. It was then
thresholded at 0.7 to create periods of zero beta amplitude
in the later cases, by setting the values below the threshold
to zero. The value of the threshold was chosen such that,
the time of zero amplitude increased linearly from case 5
onwards, reachingmore than 5 s out of the 20 s simulation
in case 15 (lowering the threshold had a saturating effect
on the time of zero amplitude). In the first four cases,
there were no periods of zero amplitude. Finally, beta
inputs were created by multiplying the sinusoid with
the generated modulatory signals. Open-loop simulations
were run with the low-frequency common inputs and
Gaussian noise independent inputs set to the same levels

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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6 B. Zicher and others J Physiol 0.0

as in the last two cases from the first simulations. Force
changes were quantified by comparing the mean force
level and COV values to the control case (no beta input).

Optimisation of controller. The PID parameters Kp, Ki,
and Kd were optimised using particle swarm optimisation
(PSO) (Pornsing et al. 2015; Shi & Eberhart, 1999; Tripathi
et al. 2007). PSO uses eqn (6) to update particle i’s velocity
at time t + 1 based on the current position (xi), the local
best (pbesti) and global best (gbest) positions. The new
position is then updated using the velocity.

vt+1
i = ωvti + ϕ1β1

(
pbestti − xti

) + ϕ2β2
(
gbestt − xti

)
.(6)

The inertia (ω), cognitive (φ1) and social (φ2) weights
change over time in such a way that the search focuses
more on the local area in the beginning of the optimisation
(eqns (7), (8) and (9); β1 and β2 are random numbers
between 0 and 1.

ω = 0.9 − 0.9 − 0.4
T

t, (7)

ϕ1 = 0.5 − 2.5
T

t + 2.5, (8)

ϕ2 = 2.5 − 0.5
T

t + 0.5, (9)

with t representing the current cycle number and T the
total number of cycles. To find the best particle position
(PID parameters), the integral of time-weighted absolute
error (ITAE) was used, described by eqn (10):

ITAE =
∫

t |e (t )| dt (10)

Where e(t) is the error at time t.

Data analysis

HD-sEMG decomposition. Experimental data recorded
from the muscle was filtered (20–500 Hz, second order
zero-lag Butterworth) and decomposed into constituent
spike trains with previously validated methods (Holobar
et al. 2014; Negro et al. 2016) and the decomposed signals
were visually inspected and edited to ensure reliable
estimates of motor unit spiking activity (Hug et al. 2021).
Only the units active during the interval of interest and
those with a pulse-to-noise ratio higher than 30 dB were
considered in the analysis.

Coherence measures. In coherence measures, only
tonically firing units were included. For open loop
simulations, MNs activated by the low-frequency input
(without beta) were considered (22 out of 25 MNs). In
closed-loop simulations, MNs steadily recruited by the

mean level of input (when beta amplitude was 0) were
included in the analysis. In the simulationswith step target
13 MNs, while in the scenario with sinusoidal target, 20
MNs were firing steadily. To relate the simulation results
to physiological values, the IMC was calculated fromMN
spike trains. This was done by first summing the spike
trains from two sub-pools of MNs to get their cumulative
spike trains (CST). The power spectral densities of the two
CSTs and the cross power spectral density were used to
calculate the IMC. The procedure was repeated multiple
times with different random sub-pools. This coherence
represents a measure of the frequency content of the
common input. IMC values were estimated using the
Neurospec 2.11 toolbox for Matlab (www.neurospec.org;
Mathworks Inc., USA).
When estimating IMC values from experimental data,

40 s of recording was used, with all motor units firing
in a stable way. In the simulation results, the first second
of each simulation (when force increased from 0 to the
target) was discarded in this analysis.

Results

Experimental data

In the TA, FDI and ADM muscles, 19.89 ± 7.20,
8.00 ± 2.86, and 9.36 ± 2.54 (mean ± standard
deviation) motor units were identified and used to
calculate coherence values. The average discharge rate
across all motor units was 11.32 ± 1.87 pulses/second for
ADM, 12.51 ± 2.29 for FDI and 10.84 ± 1.69 for TA
muscle. The inter-spike interval coefficient of variation
was 20 ± 6%, 19 ± 5%, 14 ± 4% for ADM, FDI and TA
muscles, respectively. The coefficient of variation of force
during the steady part of the contraction was 4.6 ± 0.8%
for ADM, 5.5 ± 0.8% for FDI and 2.4 ± 0.8% for TA.
Here we report IMC levels measured in the three muscles
during isometric contractions. The results are shown in
Fig. 2. Average peak IMC values found in beta frequencies
(13–30 Hz) were 0.16 ± 0.07 for ADM, 0.13 ± 0.07 for
FDI and 0.29 ± 0.14 for TA muscle. Most muscles and
subjects led to IMC peaks in beta below 0.5, with only
one muscle-subject pair showing a peak above 0.6. The
location of the beta peak was variable across subjects, as
shown in Fig. 2.

Sustained beta inputs to MNs at physiological levels
have minimal effect on force

In the first simulation, the effect of adding beta oscillations
of constant amplitude to the common input to MNs was
assessed. The results from three different levels of beta
inputs are shown in Fig. 3, with each panel representing
simulations with different independent input levels. As

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 0.0 Beta does not drive muscle force 7

expected, increasing the amplitude of beta resulted in an
increase in the IMC at 20Hz.However, while changing the
level of beta inputs strongly affected the obtained levels of
intramuscular coherence, it had minimal effect on force,
with a very small increase in themean force level when the
largest amplitude beta was compared to the control case
(0.79%, 0.42%, and 0.44% increase in the simulations with
lowest to highest noise levels, respectively). The average
level of force was calculated on the stable part of the force
trace. This change in force is unlikely to be behaviourally

relevant, as even if the force produced in the control case is
considered to be 100%MVC, the forces were boosted less
than 0.8% MVC. Changing the level of the independent
inputs to MNs did not change the conclusions.
To test how the bandwidth of the simulated beta input to

MNs affected the results, we ran an additional simulation
with a wider bandwidth beta input. Themodel parameters
were the same as in the previous simulations, but beta
was generated by bandpass filtering white Gaussian noise
within 15 to 25 Hz. The variance of this Gaussian noise

Figure 2. IMC levels measured experimentally in three different muscles
IMC values for each subject are plotted with grey lines and average values are shown in black. In all three muscles,
there are clear peaks at beta frequencies (15–25 Hz). TA muscle data was recorded from 28 subjects, while ADM
and FDI muscle data from 11 subjects.

Figure 3. Increasing beta power with minimal changes in force has a large effect on IMC, regardless of
independent input level (reported as unit of electrical conductance)
A, forces produced (upper plot) and intramuscular coherence traces (lower plot) in the simulations with the lowest
level of noise. Three different beta amplitude levels were simulated. B, force traces and intramuscular coherence
plots with middle level noise. C, force produced and intramuscular coherence results with the highest level of noise
tested.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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8 B. Zicher and others J Physiol 0.0

was set such that the resulting IMC peak in beta frequency
reached 0.6. The effect on force was minimal, with the
mean force level increasing 1.1% compared to the control.

Beta levels that can modulate force are above
physiological values

To study whether force changes can be controlled with
power in beta, the common input to the MN pool was
restricted to a 20 Hz sinusoid. A PID controller was set
to optimally determine beta levels to track various force
traces (step and sinusoidal).
In the first scenario, the target force trace had step

changes between 5 and 10 N. Figure 4A and B show the
results from this simulation. The controller successfully
tracked changes in the force target by increasing the
amplitude of the 20 Hz sinusoid. The intramuscular
coherence, calculated from the spike trains of active MUs
over the whole epoch, showed a peak at 20 Hz and
its harmonics that saturated to 1, which contrasts with
observations from experimental data.

To check how IMC values change when beta is only
producing small changes in force, in the second simulation
the PID had to reliably track 1 Hz oscillatory targets of
different amplitudes. Figure 4C and D shows the force
traces and corresponding IMC plots for the three cases
which correspond to rhythmic force changes equivalent
to 3%, 6% and 9% coefficient of variation. The lowest
value was chosen to match the physiological variation
at a low-level isometric contraction. The peak coherence
values around 20 Hz in these scenarios were 0.91, 0.85
and 0.84, well above the experimental observations. As in
the previous tests, we observed here clear peaks at 40 Hz
(harmonic of 20 Hz), something not seen experimentally.
These harmonics are due to exacerbated beta levels that
synchronise MN firings.

Short-lived beta events may have an effect on force

In the next simulation, the effect on force of various
levels of bursting beta was assessed. In these runs, beta
was represented by rectangular bursts of three cycles

Figure 4. Force can be controlled by modulating the power in the beta band of the common inputs to
MNs
A, force produced by the motor units (green) and target force tracked (magenta). The target force was made
up of step changes between 5 and 10 N. B, intramuscular coherence plot calculated from the spike trains of
motoneurons, corresponding to the scenario in A. C, forces produced with different levels of variation. The 20 Hz
sinusoid input offset, together with the independent inputs, produces an ∼8 N constant force. The target forces
were oscillating at 1 Hz. D, intramuscular coherence plots for the three cases described before.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 0.0 Beta does not drive muscle force 9

of a 20 Hz sinusoid. As in the first simulations, the
unrestricted PID controller was used to directly change
conductance to create a common input that resulted in a
10-N constant force. Beta bursting activity was then added
as an additional common input to the pool.

In total, nine conditions were tested: three different
amplitudes and three different rates of bursts. For each of
these, 30 data points were generated. IMC values around
20 Hz increased with increasing rate and amplitude of
bursts (Fig. 5A). Panels B, C and D in Fig. 5 show force
traces from simulations with bursts happening on average
every 1.5 s, with increasing amplitudes. For the largest
beta levels (Fig. 5D), transient perturbations in force could
be seen compared to when the input contained lower
levels of beta (Fig. 5B). These perturbations were observed
while IMC levels within the beta band were still within
physiological realistic ranges as compared to experimental
results.

Effect on force increases with the amplitude
modulation of beta

To study how the variability in beta amplitudes could affect
our results, we simulated a set of different beta inputs
ranging from constant amplitude signals to beta activity
only occurring in the form of bursts with a certain rate
and quantified the effects on force for the different types
of inputs simulated. To do this, a 20 Hz sinusoid was
modulated by a low-frequency noise of different variances.
As the variance of the noise increased, the beta input
became more burst-like, with the time periods of zero
beta amplitude increasing. Figure 6A shows the first case,
closest to a constant amplitude beta, while Fig. 6B shows
the last case, in which bursts of high amplitude beta can
be seen. In these simulations, a total of 15 cases of beta
inputs were created, with the low frequency common and
Gaussian noise independent inputs kept the same as in
Fig. 3B and C.

Figure 5. Intramuscular coherence in the beta band increases with the amplitude and frequency of the
bursts
A, boxplot of average coherence values (N = 30) in beta band (15–25 Hz) for 10 different conditions: control with
no beta input, three levels of beta with three different burst rates. Beta levels are reported in terms of percentage
of the average input level. Individual data shown as grey dots, plotted with jitter for clarity. B, force produced with
lowest amplitude of beta with a rate of bursts of 0.67 Hz (every 1.5 s). C, force produced with beta amplitude
equal to 26% of common input. Rate of bursts set to 0.67 Hz. D, force produced with largest amplitude of beta
simulated (30% common input). Rate of bursts equal to 0.67 Hz.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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10 B. Zicher and others J Physiol 0.0

For the scenario with the first common and
independent input parameters, the results show a
maximum change in mean force levels of 0.85 (% increase
from control level) and a 0.25% increase in the COV of
force (Fig. 6C). In the case with larger level of independent
inputs, the change in mean force levels was below 0.75%,
while the maximum change in COV of force was 0.32%
(Fig. 6D). In both cases, the observed changes in force
increasewith themodulation of beta, but they areminimal
compared to the physiologically recorded COV of force
reported in the experimental part of this study.

Discussion

Previous work has suggested a potential role for beta
rhythms in force modulation. However, the magnitude
of beta levels required to affect force has not been
studied. To address this, the current study investigated
a potential effect of beta band oscillatory activity on
force production using physiologically realistic models
and direct comparison with experimental observations.
The level of beta common inputs used in the simulations
was compared to experimental data from relatively large
pools of subjects.Multiple scenarioswere tested: frombeta
represented as sustained rhythms to short-lived events.

The work was based on the assumption that values of
coherence outside those reported experimentally cannot
reflect real experimental conditions.
In the first part of this work, open-loop simulations

were run with beta represented as a continuous signal.
The results from the simulations showed that changes
in beta amplitudes that increased IMC values from 0.1
to 0.5 (representing the experimental range) resulted in
negligible changes in the force traces. To test whether
beta can be used directly to modulate force, closed-loop
simulations were set up. The controller could successfully
adjust power in beta such that step and sinusoidal force
traces were tracked. However, even when the changes in
force were at 3% COV of force, which is comparable to
the variation reported in our experimental results, the
level of beta was considerably higher than what could
be measured experimentally. Overall, this suggests that
sustained beta activity has minimal involvement in force
production, contrary to previous suggestions (Watanabe
& Kohn, 2015).
We also assessed the situation where beta is a not a

continuous signal. There is increasing evidence that at
a single trial level, in isometric contractions tasks, the
oscillatory activity is transmitted in bursts, instead of as
a sustained rhythm (Echeverria-Altuna et al. 2022; Little

Figure 6. Mean force and COV increases with beta amplitude modulation
A, beta input that was simulated as case 1. B, beta input simulated as the last case. C, beta input effect on force
in 15 cases tested, with independent noise standard deviation equal to 15% common input. Mean force change
(% control) is plotted as filled circles in blue and the change in COV of force is plotted with an × in magenta. Beta
inputs ranged from continuous (lighter colours) to burst-like (darker colours). D, force changes in the simulations
with the noise standard deviation equal to 23% common input. Mean force changes are in blue, while COV
changes in magenta.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 0.0 Beta does not drive muscle force 11

et al. 2019; Wessel, 2020; Bräcklein et al, 2022). Here,
open-loop simulations were run with a common beta
input represented as short-lived bursting activity to assess
changes in force. Results suggest that, in this case and
depending on the actual characteristics of beta bursts (in
terms of their rate and amplitudes), it may be possible
that beta has an effect on force while still maintaining
beta IMC in the MNs at experimentally observed levels.
This non-linear effect on forces should be expected to be
relatively small according to our results: the required levels
of the beta bursts affecting forces resulted in IMC values
in the range of 0.8–1, which are much higher than the
beta IMC levels seen experimentally (averaging 0.1–0.2
depending on the muscles recorded). Such influence of
beta inputs toMNs on force would not be compatible with
voluntary control of force due to the temporal sparsity and
regularity of the bursting beta.

To understand how the variability of the beta envelope
affects forces when values of IMC are fixed, we used
different beta inputs ranging from continuous beta (with
constant instantaneous amplitude) to beta inputs in the
form of short-lived events spaced by periods of no beta.
In all these cases, beta power was adjusted to get IMC
values of 0.6, which is larger than what is mostly seen
experimentally. Our results have shown that as beta is
transmitted in shorter bursts of high amplitude, the effect
on force, in terms of mean value and COV, increases.
Nevertheless, the amplitude of the changes remains small
compared to the physiological variation of force output in
an isometric contraction.

The results of this study exclude a main direct role of
beta transmission toMNs for force control. An alternative
hypothesis for beta being indirectly used for force
control is a potential role in transmitting state-related
information (Baker, 2007; Witham et al. 2011). The idea
that ascending pathways contribute to corticomuscular
coherence suggests that beta oscillations may play a role
in motor control through sensory feedback (Witham et al.
2011). Our results, suggesting that beta is unlikely to have
a direct role in force control, are consistent with this view.

Overall, the results are relevant when considering beta
activity as a control signal in biofeedback or closed-loop
stimulation applications (Bouthour et al. 2019; Fukuma
et al. 2018; He et al. 2019; Little et al., 2013, 2016;
Rosa et al. 2015). As beta is transmitted from the brain
to muscles, extracting beta signals from the muscle
recordings, instead of direct brain recordings, could be
a promising approach in these systems. The results here
are suggestive of how IMC values change with different
dynamics of beta.

Limitations

The computational model used in this study is obviously
a large simplification of the neuromuscular system and

therefore the results should be interpreted carefully.
Several limitations have to be considered in this regard.
First, the two-compartmental model used in this work
is one of many structures that have been used in
modelling single neurons (Herz et al., 2006). Even if
the model used has been extensively validated, the
sensitivity of the outcomes to changes in model structure,
complexity and parameter values has not been tested.
Furthermore, the size of the simulated MN pool is
smaller than the expected number of active MNs during
voluntary contractions. The relatively small pool size was
determined based on the high computational demands
of the closed-loop simulations we ran. Nonetheless, in
preliminary work to define the final simulation set, we
ran additional open-loop simulations with increasing
number of MNs and we did not observe any deviations
from the conclusions reached with a smaller pool (these
results are not shown). Moreover, in our experiments
we only simulated MNs corresponding to low fatiguing
motor units. As a consequence, our results may not be
generalizable to conditions involving high contraction
levels. Nonetheless, we cannot identify mechanisms in
MN control sufficiently different between lower- and
higher-thresholds MNs to expect substantially different
results. Regarding the inputs to MNs simulated, the levels
of beta simulated in the different tests ran here can only
be interpreted in relative terms. To link our simulations
to physiological data, we adjusted our model parameters
by fixing either beta IMC levels or force changes and
checked how the other parameters in the model changed.
The proportional level of independent inputs relative
to common beta inputs is unlikely to change the main
conclusions in this case, as suggested in the Results where
multiple noise levels were considered. As the independent
input level increased, the beta input (relative to the low
frequencies) needed to reach the same IMC values also
increased, while the effect on force was similar (shown
in Fig. 3). This is expected since the level of coherence at
the beta frequency depends on the beta power relative to
the independent input. Nevertheless, future work should
test how beta inputs change with a linear increase in
independent inputs, while keeping IMC levels constant.
Finally, in most simulations, beta activity was represented
as a pure 20 Hz sinusoid, which is a simplification of
the oscillatory signals found in the nervous system. Non-
etheless, we also ran an open-loop simulation with a
wider bandwidth beta signal, and this suggested similar
conclusions as the case of pure beta input.
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